"Circuit data"

Circuit data

Simple network model of the transfer measurement system

For frequencies below the resonance frequencies, we can ignore the the parasitic capacitances. In addition, if at the highest frequency $f_{max}$ the load impedance is much larger than $2 \pi f_{max} L_r$, we can also ignore the voltage induced in L1. The circuit can then be as simple as shown below.

Netlist: coupledCoilsSimple.cir

"Coupled Coils Simple"
L1 N002 0 L value={L_s} iinit=0
R1 N001 N002 R value={R_s} noisetemp=0 noiseflow=0 dcvar=0
V1 N001 0 V value=0 dc=0 dcvar=0 noise=0
E1 out 0 N002 0 {k_c*sqrt(L_r/L_s)}
.end
Table: Element data of expanded netlist 'Coupled Coils Simple'
RefDesNodesRefsModelParamSymbolicNumeric
E1out 0 N002 0 E value$k_{c} \left(\frac{L_{r}}{L_{s}}\right)^{0.5}$$17.85 k_{c}$
L1N002 0 L value$L_{s}$$0.000314$
iinit$0$$0$
R1N001 N002 R value$R_{s}$$8.1$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
V1N001 0 V value$0$$0$
dc$0$$0$
dcvar$0$$0$
noise$0$$0$

Go to Coupled-Coils-Simple_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.6.0 © 2009-2024 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2024-03-04 22:11:05