"Circuit Data"

Circuit Data

Circuit diagram

Netlist: bandwidthBudgeting.cir

"Bandwidth Budgeting"
L1 P001 0 L value={L_s} iinit=0
R1 N002 P001 R value={R_s} noisetemp=0 noiseflow=0 dcvar=0
L2 P002 0 L value={L_r} iinit=0
C2 N003 0 C value={C_r} vinit=0
R2 N003 P002 R value={R_r} noisetemp=0 noiseflow=0 dcvar=0
G1 N002 0 N001 0 {1/B_T}
C1 N002 0 C value={C_s} vinit=0
V1 N001 0 V value=0 dc=0 dcvar=0 noise=0
E1 out 0 N003 0 {1/A_R/s}
R3 N002 0 R value={R_ds} noisetemp=0 noiseflow=0 dcvar=0
R4 N003 0 R value={R_dr} noisetemp=0 noiseflow=0 dcvar=0
K1 L1 L2 {k_c}
.end
Table: Element data of expanded netlist 'Bandwidth Budgeting'
RefDesNodesRefsModelParamSymbolicNumeric
C1N002 0 C value$C_{s}$$1.091 \cdot 10^{-10}$
vinit$0$$0$
C2N003 0 C value$C_{r}$$2.533 \cdot 10^{-11}$
vinit$0$$0$
E1out 0 N003 0 E value$\frac{1}{A_{R} s}$$\frac{2.471 \cdot 10^{6}}{s}$
G1N002 0 N001 0 G value$\frac{1}{B_{T}}$$0.03694$
K1L1 L2 K value$k_{c}$$0.0004887$
L1P001 0 L value$L_{s}$$0.000314$
iinit$0$$0$
L2P002 0 L value$L_{r}$$0.1$
iinit$0$$0$
R1N002 P001 R value$R_{s}$$8.1$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R2N003 P002 R value$R_{r}$$235$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R3N002 0 R value$R_{ds}$$R_{ds}$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
R4N003 0 R value$R_{dr}$$R_{dr}$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
V1N001 0 V value$0$$0$
dc$0$$0$
dcvar$0$$0$
noise$0$$0$
Table: Parameter definitions in 'Bandwidth Budgeting'.
NameSymbolicNumeric
$A_{R}$$4.046 \cdot 10^{-7}$$4.046 \cdot 10^{-7}$
$A_{Rmin}$$4.046 \cdot 10^{-7}$$4.046 \cdot 10^{-7}$
$A_{t}$$-53.7$$-53.7$
$B_{T}$$27.07$$27.07$
$C_{iRT}$$2.2 \cdot 10^{-10}$$2.2 \cdot 10^{-10}$
$C_{r}$$2.533 \cdot 10^{-11}$$2.533 \cdot 10^{-11}$
$C_{s}$$1.091 \cdot 10^{-10}$$1.091 \cdot 10^{-10}$
$I_{L}$$0.000125$$0.000125$
$Io_{p}$$0.03694$$0.03694$
$L_{r}$$0.1$$0.1$
$L_{s}$$0.000314$$0.000314$
$R_{\ell}$$2000$$2000$
$R_{g max}$$6.464 \cdot 10^{8}$$6.464 \cdot 10^{8}$
$R_{iRT}$$1.0 \cdot 10^{6}$$1.0 \cdot 10^{6}$
$R_{r}$$235$$235$
$R_{s}$$8.1$$8.1$
$SR_{vR}$$7854$$7854$
$SR_{vT}$$3.332 \cdot 10^{4}$$3.332 \cdot 10^{4}$
$S_{iR max}$$9.484 \cdot 10^{-24}$$9.484 \cdot 10^{-24}$
$S_{iT max}$$\frac{1.071 \cdot 10^{-11}}{R_{g}^{2}}$$\frac{1.071 \cdot 10^{-11}}{R_{g}^{2}}$
$S_{vR max}$$3.893 \cdot 10^{-18}$$3.893 \cdot 10^{-18}$
$S_{vT max}$$1.071 \cdot 10^{-11}$$1.071 \cdot 10^{-11}$
$V_{N}$$-15$$-15$
$V_{P}$$15$$15$
$V_{TRcoil}$$0.3536$$0.3536$
$V_{TRp}$$1.061$$1.061$
$V_{i}$$1$$1$
$V_{o}$$0.25$$0.25$
$V_{rec}$$0.004494$$0.004494$
$Z_{i}$$1.0 \cdot 10^{4}$$1.0 \cdot 10^{4}$
$f_{fpl}$$5000$$5000$
$f_{m}$$1000$$1000$
$f_{max}$$1.5 \cdot 10^{4}$$1.5 \cdot 10^{4}$
$f_{min}$$60$$60$
$k_{c}$$0.0004887$$0.0004887$
$v_{on}$$0.0001$$0.0001$
Table: Parameters without definition in 'Bandwidth Budgeting.
Name
$R_{ds}$
$R_{dr}$
$R_{g}$

Go to Bandwidth-Budgeting_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.6.0 © 2009-2024 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2024-03-04 22:12:16