"Circuit data"

Circuit data

Circuit diagram

Netlist: supplyDecoupling.cir

"Supply Decoupling"
V1 in 0 V value=0 dc=0 dcvar=0 noise=0
I1 0 out I value=0 dc=0 dcvar=0 noise=0
R1 P001 in {rho_c*4*L/pi/d^2}
L1 P001 out {L*1u}
L3 P002 P003 {L_c}
C1 out P004 {C_e}
C2 out P002 {C_c}
R2 P005 0 {R_e}
R3 P003 0 {R_c}
L2 P004 P005 {L_e}
.end
Table: Element data of expanded netlist 'Supply Decoupling'
RefDesNodesRefsModelParamSymbolicNumeric
C1out P004 C value$C_{e}$$1.0 \cdot 10^{-5}$
C2out P002 C value$C_{c}$$1.0 \cdot 10^{-7}$
I10 out I value$0$$0$
dc$0$$0$
dcvar$0$$0$
noise$0$$0$
L1P001 out L value$1.0 \cdot 10^{-6} L$$1.0 \cdot 10^{-6}$
L2P004 P005 L value$L_{e}$$2.0 \cdot 10^{-8}$
L3P002 P003 L value$L_{c}$$3.0 \cdot 10^{-9}$
R1P001 in R value$\frac{4 L \rho_{c}}{\pi d^{2}}$$0.08556$
R2P005 0 R value$R_{e}$$0.05$
R3P003 0 R value$R_{c}$$0.05$
V1in 0 V value$0$$0$
dc$0$$0$
dcvar$0$$0$
noise$0$$0$
Table: Parameter definitions in 'Supply Decoupling'.
NameSymbolicNumeric
$C_{c}$$1.0 \cdot 10^{-7}$$1.0 \cdot 10^{-7}$
$C_{e}$$1.0 \cdot 10^{-5}$$1.0 \cdot 10^{-5}$
$L$$1$$1$
$L_{c}$$3.0 \cdot 10^{-9}$$3.0 \cdot 10^{-9}$
$L_{e}$$2.0 \cdot 10^{-8}$$2.0 \cdot 10^{-8}$
$R_{c}$$0.05$$0.05$
$R_{e}$$0.05$$0.05$
$d$$0.0005$$0.0005$
$\rho_{c}$$1.68 \cdot 10^{-8}$$1.68 \cdot 10^{-8}$

Go to Supply-Decoupling_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.1 © 2009-2022 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.eu

Last project update: 2022-03-23 14:06:41