"Supply Decoupling" V1 in 0 V value=0 dc=0 dcvar=0 noise=0 I1 0 out I value=0 dc=0 dcvar=0 noise=0 R1 P001 in {rho_c*4*L/pi/d^2} L1 P001 out {L*1u} L3 P002 P003 {L_c} C1 out P004 {C_e} C2 out P002 {C_c} R2 P005 0 {R_e} R3 P003 0 {R_c} L2 P004 P005 {L_e} .end
RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
---|---|---|---|---|---|---|
C1 | out P004 | C | value | $C_{e}$ | $1.0 \cdot 10^{-5}$ | |
C2 | out P002 | C | value | $C_{c}$ | $1.0 \cdot 10^{-7}$ | |
I1 | 0 out | I | value | $0$ | $0$ | |
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
noise | $0$ | $0$ | ||||
L1 | P001 out | L | value | $1.0 \cdot 10^{-6} L$ | $1.0 \cdot 10^{-6}$ | |
L2 | P004 P005 | L | value | $L_{e}$ | $2.0 \cdot 10^{-8}$ | |
L3 | P002 P003 | L | value | $L_{c}$ | $3.0 \cdot 10^{-9}$ | |
R1 | P001 in | R | value | $\frac{4 L \rho_{c}}{\pi d^{2}}$ | $0.08556$ | |
R2 | P005 0 | R | value | $R_{e}$ | $0.05$ | |
R3 | P003 0 | R | value | $R_{c}$ | $0.05$ | |
V1 | in 0 | V | value | $0$ | $0$ | |
dc | $0$ | $0$ | ||||
dcvar | $0$ | $0$ | ||||
noise | $0$ | $0$ |
Name | Symbolic | Numeric |
---|---|---|
$C_{c}$ | $1.0 \cdot 10^{-7}$ | $1.0 \cdot 10^{-7}$ |
$C_{e}$ | $1.0 \cdot 10^{-5}$ | $1.0 \cdot 10^{-5}$ |
$L$ | $1$ | $1$ |
$L_{c}$ | $3.0 \cdot 10^{-9}$ | $3.0 \cdot 10^{-9}$ |
$L_{e}$ | $2.0 \cdot 10^{-8}$ | $2.0 \cdot 10^{-8}$ |
$R_{c}$ | $0.05$ | $0.05$ |
$R_{e}$ | $0.05$ | $0.05$ |
$d$ | $0.0005$ | $0.0005$ |
$\rho_{c}$ | $1.68 \cdot 10^{-8}$ | $1.68 \cdot 10^{-8}$ |
Go to Supply-Decoupling_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.1 © 2009-2022 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.eu
Last project update: 2022-03-23 14:06:41