

Example voltage amplifier

Source

- Information accurately related to open-circuit voltage
- Source impedance inaccurately known

- Information accurately related to driving voltage
- Load impedance inaccurately known

Ideal characteristics

Source termination impedance and load drive impedance

Amplifier types

Follow from best source termination and load drive conditions

signal

transfer

Amplifier object

Three electrical ports - input port:

Definition

- connection to signal source
- output port:
- connection to load
- power port:

connection to power supply Amplification function

- provide load with accurate copy of source signal
- **Characteristic property** - Available power gain exceeds unity

Functional model

- Two-port
- input and output port only
- Active (delivers power) - Linear, instantaneous,
- and time-invariant:

$$y(t) = A x(t)$$

 $A = \text{constant}$

Modeling of ideal behavior (natural two-port)

Transmision-1 matrix representation

Port isolation properties

non-isolated

non-isolated

non-isolated

non-isolated

isolated

isolated

isolted

isolated

non-isolated

non-isolated

non-isolated

non-isolated

isolated

isolated

isolated

isolated

input-output input-power output-power configuration

non-isolated

non-isolated

non-isolated

non-isolated

isolated

isolated

isolated

isolated

Floating port modeling and characterization

Anti-causal notation:

common-ground

floating supply

differential receiver

differential driver

differential receiver / driver

$$\left(\begin{array}{c} V_i \\ I_i \end{array}\right) = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) \left(\begin{array}{c} V_o \\ I_o \end{array}\right)$$

Source-to-load transfer

$$A_v = \frac{V_{\ell}}{V_s} = \frac{1}{A + B\frac{1}{Z_{\ell}} + CZ_s + D\frac{Z_s}{Z_{\ell}}}$$

$$A_y = \frac{I_{\ell}}{V_s} = \frac{1}{AZ_{\ell} + B + CZ_{\ell}Z_s + DZ_s}$$

$$A_z = \frac{V_{\ell}}{I_s} = \frac{1}{A\frac{1}{Z_s} + B\frac{1}{Z_s Z_{\ell}} + C + D\frac{1}{Z_{\ell}}}$$

$$A_i = \frac{I_{\ell}}{I_s} = \frac{1}{A\frac{Z_{\ell}}{Z_s} + B\frac{1}{Z_s} + CZ_{\ell} + D}$$

Port impedances

For design purposes: source-to-load transfers and port impedances can be expressed in terms of the T1 matrix parameters (A,B,C,D) and the source and the load impedance.

Unilateral amplifier types Zero reverse transfer

AC = BD

Nullor and six nonunilateral types not listed in the table

Network model

MNA matrix stamp

SLiCAP test bench for determination of the T1 matrix parameters

#!/usr/bin/env python3

Amplifiers, concept, types and ideal behavioral models

-*- coding: utf-8 -*-

Python test bench for determination of the T1 parameters

- Use source identifier 'V1'
- Use load resistor value 'R ell'
- Use the same file name for the .asc, .cir, .PNG, and .SVG
- files associated with a circuit.

from SLiCAP import *

prj = initProject('ABCD-test')

Create a list with circuit file names if you want to run multiple circuits. fileNames = ['ABCD-test']

for fileName in fileNames:

#makeNetlist(fileName + '.asc', fileName)

Define an instruction

i1 = instruction()

i1.setCircuit(fileName + '.cir')

i1.setSimType('symbolic') i1.setGainType('gain')

i1.setDataType('laplace')

Use the same identifier for the source in all files i1.setSource('V1')

Define the detector for determination of the input voltage i1.setDetector('V i')

result = i1.execute()

V_i is the transfer from V1 to the voltage V_i at node i V i = result.laplace

Define the detector for determination of the input current i1.setDetector('I V1') result = i1.execute()

I i is the transfer from V1 to the current through V1 I i = -result.laplace

Define the detector for determination of the output voltage

result = i1.execute()

V o is the transfer from V1 to the output voltage V o = result.laplace

Define the detector for determination of the output current i1.setDetector('I_R2') result = i1.execute()

I o is the transfer from V1 to the current through R2 I o = result.laplace

Calculate the T1 parameters

Use the same name for the load resistance in all files $R_ell = sp.Symbol('R_ell')$

= sp.simplify(sp.limit(V_i/V_o, R_ell, 'oo')) = sp.simplify(sp.limit(V_i/I_o, R_ell, 0))

= sp.simplify(sp.limit(I_i/V_o, R_ell, 'oo')) = sp.simplify(sp.limit(I i/I o, R ell, 0))

htmlPage('Determination of T1 matrix parameters') head2html('Test circuit')

img2html(fileName + '.svg', 400) head2html('T1 matrix of the device under test')

text2html('The T1 matrix of the device under test is found as:') T1 = sp.Matrix([[A,B], [C,D]])

eqn2html('T_1', T1)

Vili = sp.Matrix([[sp.Symbol('V i')], [sp.Symbol('I i')]]) $Volo = sp.Matrix([[sp.Symbol('V_o')], [sp.Symbol('I_o')]])$

Display the matrix equation without execution of the multiplication text2html('The matrix equation for the two-port (DUT) is found as:') $text2html('$$' + sp.latex(Vili) + "=" + sp.latex(T1) + '\cdot' +$ sp.latex(Volo) + '\$\$')

Display the matrix equation with execution of the multiplication text2html('This can be written as:') eqn2html(Vili, T1*Volo)

Determination of T1 matrix parameters

Test circuit

T1 matrix of the device under test

The T1 matrix of the device under test is found as:

$$T_1 = egin{bmatrix} 0 & 0 \ -rac{1}{R} & 0 \end{bmatrix}$$

(1)

The matrix equation for the two-port (DUT) is found as:

$$egin{bmatrix} egin{bmatrix} V_i \ I_i \end{bmatrix} = egin{bmatrix} 0 & 0 \ -rac{1}{R} & 0 \end{bmatrix} \cdot egin{bmatrix} V_o \ I_o \end{bmatrix}$$

This can be written as:

Go to ABCD-test_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.1 © 2009-2022 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog

Last project update: 2022-02-13 12:11:22

Try yourself and verify the answer with SLiCAP

Assign symbolic values to the elements and determine the T1 transmission parameters by hand. Verify the obtained results with SLiCAP

