

Definition Amplifier object - input port: connection to signal source output port:
connection to load - power port:
connection to power supply Amplification function provide load with accur
copy of source signal haracteristic property Available power gain exceeds unity
Functional model Two-port
Two-port
input and output port only Active (delivers power) Linear, instantaneous, and time-invariant:
$y(t)=A x(t)$
$A=$ constant
Example voltage amplifier
Information accurately related to open-circuit voltage Source impedance inaccurately known
oad
Information accurately related to driving voltage
impedance inaccurately known

Ideal characteristics

Source termination impedance and load drive impedance

plifier types
ollow from best source termination and load drive conditions for accurate signal
transfer

Amplifiers, concept, types and ideal behavioral models

Port isolation properties

non-isolated	non-isolated	non-isolated	common-ground
non-isolated	non-isolated	isolated	
non-isolated	isolated	non-isolated	differential rece floating supply
isolated	isolated	isolated	${ }_{x}$ floating supply
isolated	non-isolated	non-isolated	\times
isolated	non-isolated	isolated	differential driver
isolated isolated	isolted	non-isolated	${ }_{\text {differential receiver }}$

Floating port modeling and characterization

Modeling of ideal behavior (natural two-port) Transmision-1 matrix representation

Source-to-load transfer

$$
\begin{aligned}
& A_{v}=\frac{V_{\ell}}{V_{s}}=\frac{1}{A+B \frac{1}{Z_{\ell}}+C Z_{s}+D \frac{Z_{s}}{Z_{\ell}}} \\
& A_{y}=\frac{I}{V_{s}}=\frac{1}{A Z_{e}+B+C Z_{\ell} Z_{s}+D Z_{s}} \\
& A_{z}=\frac{V_{e}}{I_{s}}=\frac{1}{A_{\frac{1}{s}}+B \frac{1}{Z_{s} Z_{e}}+C+D \frac{1}{Z_{e}}} \\
& A_{i}=\frac{I}{I_{s}}=\frac{1}{A \frac{Z_{e}}{}+B \frac{1}{Z_{s}}+C Z_{\ell}+D}
\end{aligned}
$$

Port impedances
$Z_{i}=\frac{V_{i}}{I_{i}}=\frac{A Z_{e}+B}{C Z_{e}+D}$
$\underbrace{+\underbrace{+}_{-}}_{-}$

For design purposes: source-to-load transfers and port impedances
can be expressed in terms of the T1 matrix parameters ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$)
and the source and the and the source and th
load impedance.
Unilateral amplifier types Network model Zero reverse transfer

MNA matrix stamp

$\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ C & -C & 0 & 0 & 0 & D & 1 \\ -C & C & 0 & 0 & 0 & -D & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ -A & A & 1 & 0 & -1 & -B & 0\end{array}\right)\left(\begin{array}{c}V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{5} \\ I_{o} \\ I_{i}\end{array}\right)$

SLiCAP test bench for determination of the T1 matrix parameters

- Variable - SLiCAP or Python keyword
 - Comment - String variable

\#!/usr/bin/env python3
$\#-*$ - coding: utf-8 -*.
Python test bench for determination of the $T 1$ parameters

- Use source identifier 'V1'
Use source identifier 'V1'
Use the same file name for the .asc, .cir, .PNG, and .SVG
files
files associated with a circuit.
from SLicAP import *
prj $=$ initProject('ABCD-test')
\# Create a list with circuit file names if you want to run multiple circuits. fileNames $=[$ 'ABCD-test' $]$
for fileName in fileNames:
\#makeNetlist(fileName + '.asc', fileName)
\# Define an instruction
$\mathrm{i} 1=$ instruction()
i1.setCircuitfileN
i1.setion
i1.setSimTyper('symbolic')
i1.setGainTyper('gain')
\# Use the same identifier for the source in all files i1.setSource('V1')
\# Define the detector for determination of the input voltage i1.setDetector('V i^{1}
result
il
enecute
result $=$ in.executee
$\# V i$ is the transfer

\# Define the detector for determination of the input curro i1.setDetector(IIV1')
result $=i 1$. execute ()
$\#!i$ is the transferer from V 1 to the current through v
-result.laplace
\# Define the detector for determination of the output voltage
i1.setDetector('V o') 11.setDetector(va)
\# V - 0 is the transfer from V 1 to the output voltage
-

\# Define the detector for determination of the output current
i1.setDetector('I (IR2')
result = i1.execute()
\# $1 _$o is the transfer from $V 1$ to the current through R2
$=0$
sult.laplace
\# Calculate the T1 parameters
\#_ell $=$ sp.Symbol('R_ell')
A $=$ Sp
_- sp.symbol(s_er) lin resistance in all files

htmlPage('Determination of T1 matrix parameters')
head 2 html('Test circuit')
img2 2 tml(file Name + '.svg', 400)
head2html('T1 matrix of the device under test')
text2htmm('The $\mathrm{T1}$ matrix of the device

eqn2html' 'T_1', T1)
Vili $=$ sp.Matrix(IIsp.S.

text2html('The matrix equation without execution of the multiplication
text2html('\$\$' + sp.latex(Vilii) + " $=$ " + sp.Iatex(T1) + 'Ilcdot' +
\# Display the matrix equation
text2html('This can be written as:')
text2htmi((TThis can be
eqn2htmi(Vili, $1 \times$ volo)

Determination of T1 matrix parameters

Test circuit

T1 matrix of the device under test
The T1 matrix of the device under test is found as:

$$
T_{1}=\left[\begin{array}{cc}
0 & 0 \tag{1}\\
-\frac{1}{R} & 0
\end{array}\right]
$$

The matrix equation for the two-port (DUT) is found as
$\left[\begin{array}{l}V_{i} \\ I_{i}\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ -\frac{1}{R} & 0\end{array}\right] \cdot\left[\begin{array}{l}V_{o} \\ I_{o}\end{array}\right]$
This can be written as:

$$
\left[\begin{array}{c}
V_{i} \\
I_{i}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{V_{0}}{R}
\end{array}\right]
$$

Try yourself and verify the answer with SLiCAP Assign symbolic values to the elements and determine the T

