

Definition **Amplifier object**

- Three electrical ports - input port: connection to signal source
- output port:
- connection to load - power port:
- connection to power supply
- Amplification function
- provide load with accurate
- copy of source signal Characteristic property
- Available power gain exceeds unity

Functional model

- Two-port input and output port only
- Active (delivers power) - Linear, instantaneous,
- and time-invariant:

y(t) = A x(t)A = constant

- Source - Information accurately related to open-circuit voltage - Source impedance inaccurately known
- Load - Information accurately related to driving voltage
- Load impedance inaccurately known

Ideal characteristics

230 V~

Example voltage amplifier

Source termination impedance and load drive impedance

Amplifier types

Follow from best source termination and load drive conditions for accurate

ransfer	Type	Zi	Zo
		infinite	U
	transadmittance	infinite	infinite
	transimpedance	0	0
	current amplifier	0	infinite
	voltage to voltage / current	infinite	Ro
	current to voltage / current	0	Ro
	voltage / curent to voltage	Ri	0
	voltage / current to current	Ri	infinite
	voltage / current to voltage /current	Ri	Ro

Amplifiers, concept, types and ideal behavioral models

Port isolation properties

input-output non-isolated	input-power non-isolated	output-power non-isolated	configuration common-ground
non-isolated	non-isolated	isolated	х
non-isolated	isolated	non-isolated	differential receiver
non-isolated	isolated	isolated	floating supply
isolated	non-isolated	non-isolated	х
isolated	non-isolated	isolated	differential driver
isolated	isolted	non-isolated	х
isolated	isolated	isolated	differential receiver / driver

Floating port modeling and characterization

Modeling of ideal behavior (natural two-port) Transmision-1 matrix representation

Source-to-load transfer

Port impedances

Unilateral amplifier types Zero reverse transfer

Α 0

0

0 0 С

0 0

А

0

Α 0

0 В

А В

В

В

0

C D

Network model

Amplifiers, modeling / characterization of non-ideal behavior **Dynamic behavior**

Noise

Thermal noise

Noise in conductors caused by thermal (Brownian) motion (Brown 1828). Experimetally detected by Johnson (1928) and explained by Nyquist (1928).

Shot noise

Noise current associated with a DC current through a junction.

$S_{I_n} = 2qI_J$

Excess noise

Noise current resulting from fluctuations in conduction mechanism.

n junctions In resistors
$$S_{L_{2}} = K \frac{I_{2}^{\alpha}}{L}$$

$$S_{V_{2}} = K \frac{V_{R}^{2}}{L}$$

Noisy two-ports

4 port variables: 2 independent, 2 dependent: 6 representations:

Equivalent input representation (A) convenient at an early stage of the design. Represent total noise in source type with Thevenin / Norton equivalent networks:

Determination of equivalent input noise sources

By measurements

- Measure spectrum of the output noise for open and shorted input Calculate input noise sources from
- load impedance and A,B,C,D.

By analysis Source transformation techniques or MNA

Small-signal dynamic behavior

Time domain: unit impulse or unit step response Frequency domain: Bode plots (frequency characteristics) Complex frequency domain: poles and zeros

Nonlinear behavior Static nonlinear behavior

 $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

Rate-independent / frequency-independent distortion - offset, nonlinearity, differential gain, dead zone, saturation, rate-independent hysteresis

- THD, IMD, gain compression

Dynamic nonlinear behavior

Rate-dependent / frequency-dependent distortion - THD, IMD

- gain compression - differential-gain
- differential-phase
- rate-dependent hysteresis
- slew rate
- full-power bandwidth
- overdrive recovery

(c) 2019 A.J.M. Montagne