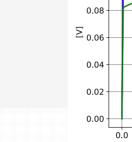
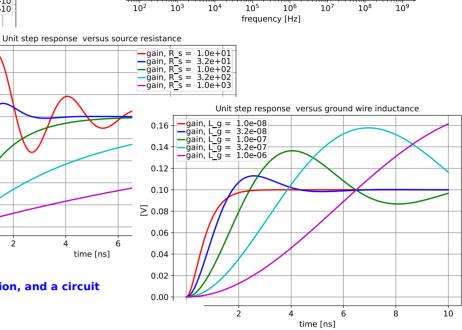

The Oscilloscope Probe


A SLiCAP demonstration of the analysis of linear dynamic circuits


Netlist: ProbeSymbolic.cir

0.12

0.10

Poles versus ground wire inductance

Table: Element data of expanded netlist 'ProbeSymbolic

RefDes	Nodes	Refs	Model	Param	Symbolic	Numeric	
C1	tip scope		C	value	C_a	$1.5\cdot 10^{-11}$	
C2	scope 0		C	value	C_b	$1.35\cdot10^{-10}$	
L1	N001 0		L	value	L_g	$1.0\cdot 10^{-8}$	
R1	tip P001		r	value	R_s	50.0	
				dcvar	0	0	
R2	tip scope		R	value	R_a	$9.0\cdot 10^6$	
R3	scope 0		R	value	R_b	$1.0\cdot 10^6$	
V1	P001 N001		V	value	0	0	
				dc	0	0	
				dcvar	0	0	
				noise	0	0	
Table: Decemeter definitions in							

Table: Parameter definitions in 'ProbeSymbolic

	1100	COymbo	no.
Nam	e Syml	oolic	Numeric
A	10		10
$\stackrel{A}{C}_a$	$1.5 \cdot$	10^{-11}	$1.5\cdot 10^{-11}$
C_b	$\frac{C_a R_a}{R_b}$		$1.35\cdot10^{-10}$
L_g	1.0 ·	10^{-8}	$1.0\cdot 10^{-8}$
R_a	R_b (A	(4-1)	$9.0\cdot 10^6$
R_b	$1.0 \cdot$	10^{6}	$1.0 \cdot 10^6$
$R_{\cdot \cdot \cdot}$	50		50.0

Define variables in a separate file

attn = 10

R scoop = 1e6

SHOW = False

C scope = 20e-12

Values for 10x 15pF probe (350MHz @ 500hm)

Create a project, an instruction, and a circuit

10³

10²

0.14

0.12

0.10

0.06

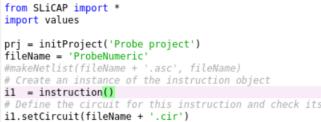
0.04

0.02

0.00

0.6

0.4


104

105

108

—gain, L_g = 1.0e-08 —gain, L g = 3.2e-08 —gain, L_g = 1.0e-07 —gain, L_g = 3.2e-07 —gain, L_g = 1.0e-06

10

Display the circuit data on an HTML page

htmlPage("Circuit data") head2html("Circuit diagram") img2html('probe.jpg', 100) img2html(fileName + netlist2html(fileName + ".cir") elementData2html(i1.circuit) params2html(i1.circuit)

Define the source, the detector, and the gain type

i1.setSource('V1') il.setDetector('V scope') il.setGainType('gain')

Go to ProbeSymbolic_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.1 © 2009-2022 SLiCAP development team Last project update: 2022-02-10 13:29:16

Perform symbolic analysis and create HTML reports

il.setDataType("laplace") result = i1.execute()

symbolic_laplace = result.laplace

text2html("The Laplace Transform of the transfer \$\\frac{V_scope}{V_s}\$ is:")

eqn2html("V_scope/V_s", symbolic_laplace)

Let's see the expression for in case the probe is calibrated text2html("If the probe is correctly calibrated, we substitute:")

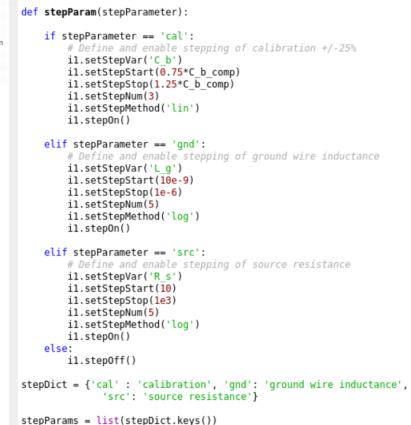
eqn2html(C_b , C_a*R_a/R_b) text2html("The expression of the transfer then simplifies to:")

symbolic_laplace_calibrated = symbolic_laplace.subs(C_b, C_b_comp)

text2html("If we factorize this result we obtain:")

eqn2html("V_scope/V_s", symbolic_laplace_calibrated)

symbolic_laplace_calibrated = sp.factor(symbolic_laplace_calibrated) eqn2html("V_scope/V_s", symbolic_laplace_calibrated)


text2html("If we normalize this result, we obtain:") # Use the SLiCAP "normalizeRational" function to see the DC transfer and the

symbolic_laplace_calibrated = normalizeRational(symbolic_laplace_calibrated)

eqn2html("V_scope/V_s", normalizeRational(symbolic_laplace_calibrated))

Define your own Python Objects and Functions

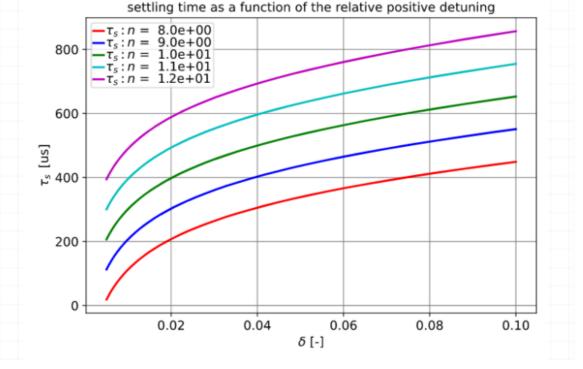
0.2

The 1-rst order ($R_s=0$) detuned unit step response is found as:

stepParams.sort()

$$\mu_{t} = rac{R_{b}}{R_{a} + R_{b}} - rac{\left(-C_{a}R_{a}^{2}R_{b} + C_{b}R_{a}R_{b}^{2}
ight)e^{-rac{i\left(R_{a} + R_{b}
ight)}{R_{a}R_{b}\left(C_{a} + C_{b}
ight)}}}{R_{a}R_{b}\left(C_{a} + C_{b}
ight)\left(R_{a} + R_{b}
ight)}$$

The 1-rst order ($R_s \neq 0, \ C_b = C_a \frac{R_a}{R_b}$) tuned unit step response is found as:


$$\mu_t = rac{R_b}{R_a + R_b + R_s} - rac{R_b e^{-rac{t(R_a + R_b + R_s)}{C_a R_a R_s}}}{R_a + R_b + R_s}$$

The settling error to the final value of a wrongly tuned probe can be written as a function of time:

$$\epsilon_t = rac{\left(C_a R_a - C_b R_b
ight) e^{-rac{\left(C_a + C_b R_b
ight)}{R_a R_b \left(C_a + C_b
ight)}}}{\left(C_a + C_b
ight) \left(R_a + R_b
ight)}$$

After equating this value with a 1 LSB error, we find the settling time as function of the relative positive detuning δ of C_b :

$$\tau_s = \frac{9C_a R_b \left(9\delta + 10\right) \log \left(\frac{9 \cdot 2^n \delta}{9\delta + 10}\right)}{10} \tag{4}$$

Create plots and place them in your HTML report

What is SLiCAP

(1)

(2)

(3)

- SLiCAP is an acronym for: S ymbolic Li near C ircuit A nalysis P rogram
- SliCAP is a tool for algorithm-based analog design automation

• SLiCAP is a an open source application written in Python and maxima CAS

- SLiCAP is intended for setting up and solving design equations of electronic circuits
- SLiCAP is part of the tool set for teaching 'Structured Electronic Design' at the Delft University of Technology

Why should you use SLiCAP

- · SLiCAP facilitates analog design automation
- SLiCAP speeds up the circuit engineering process
- SLiCAP makes complex symbolic math doable • SLiCAP integrates documentation and design
- · SLiCAP facilitates design education and knowledge building

Features

- · Accepts SPICE-like netlists as input
- · Concurrent design and documentation · Supports and facilitates structured analog design

Capabilities

- · Conversion of hierarchically structured SPICE netlist into mixed symbolic/numeric matrix equation
- · Symbolic and numeric noise analysis
- Symbolic and numeric noise integration over frequency
- Symbolic and numeric determination of transfer functions and polynomial coefficients of
- transfer functions • Symbolic and numeric determination of the Routh array
- Symbolic and numeric inverse Laplace Transform
- · Symbolic and numeric determination of network solutions
- Accurate numeric pole-zero analysis • Root-locus analysis with a arbitrarily selected circuit parameters as root locus variable(s)
- Symbolic and numeric DC and DC variance analysis for determination of budgets for resistor tolerances and offset and bias quantities
- Symbolic and numeric derivation and solution of design equations for bandwidh, frequency response, noise performance, dc variance and temperature stability

Technology

Python, Maxima CAS, HTML, CSS, LaTeX, MathJax, Python, Jupyther Lab

