DM-CM decomposition

MNA matrix equation

Matrix equation:

\begin{equation} \left[\begin{matrix}V_{s}\\0\\0\\0\\0\\0\\0\\0\\0\\0\end{matrix}\right]=\left[\begin{matrix}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\0 & 0 & c_{dg XU1N} s + s \left(0.5 c_{gb XU1N} + 0.5 c_{gs XU1N}\right) + \frac{1}{R_{b}} + \frac{1}{R_{a}} & - \frac{1}{R_{a}} & - s \left(0.5 c_{gb XU1N} + 0.5 c_{gs XU1N}\right) & 0 & - c_{dg XU1N} s - \frac{1}{R_{b}} & 0 & 0 & 0\\0 & 0 & - \frac{1}{R_{a}} & c_{dg XU1P} s + s \left(0.5 c_{gb XU1P} + 0.5 c_{gs XU1P}\right) + \frac{1}{R_{b}} + \frac{1}{R_{a}} & 0 & - s \left(0.5 c_{gb XU1P} + 0.5 c_{gs XU1P}\right) & 0 & - c_{dg XU1P} s - \frac{1}{R_{b}} & 0 & 0\\0 & 0 & - s \left(0.5 c_{gb XU1N} + 0.5 c_{gs XU1N}\right) & 0 & c_{dg XU1N} s + s \left(0.5 c_{gb XU1N} + 0.5 c_{gs XU1N}\right) + \frac{1}{R_{s}} & 0 & 0 & 0 & - \frac{1}{R_{s}} & 0\\0 & 0 & 0 & - s \left(0.5 c_{gb XU1P} + 0.5 c_{gs XU1P}\right) & 0 & c_{dg XU1P} s + s \left(0.5 c_{gb XU1P} + 0.5 c_{gs XU1P}\right) + \frac{1}{R_{s}} & 0 & 0 & 0 & - \frac{1}{R_{s}}\\0 & 0 & - c_{dg XU1N} s + 0.5 g_{m XU1N} - \frac{1}{R_{b}} & 0 & - 0.5 g_{m XU1N} & 0 & 0.5 C_{c} s + C_{d} s + 0.5 c_{db XU1N} s + c_{dg XU1N} s + 0.5 g_{o XU1N} + \frac{1}{R_{b}} & - C_{d} s & 0 & 0\\0 & 0 & 0 & - c_{dg XU1P} s + 0.5 g_{m XU1P} - \frac{1}{R_{b}} & 0 & - 0.5 g_{m XU1P} & - C_{d} s & 0.5 C_{c} s + C_{d} s + 0.5 c_{db XU1P} s + c_{dg XU1P} s + 0.5 g_{o XU1P} + \frac{1}{R_{b}} & 0 & 0\\0 & 1 & 0 & 0 & - \frac{1}{R_{s}} & 0 & 0 & 0 & \frac{1}{R_{s}} & 0\\1 & 0 & 0 & 0 & 0 & - \frac{1}{R_{s}} & 0 & 0 & 0 & \frac{1}{R_{s}}\end{matrix}\right]\cdot\left[\begin{matrix}I_{V1P}\\I_{V1N}\\V_{fbN}\\V_{fbP}\\V_{inN}\\V_{inP}\\V_{outN}\\V_{outP}\\V_{scN}\\V_{scP}\end{matrix}\right] \end{equation}

DM-CM matrix equation

Matrix equation:

\begin{equation} \left[\begin{matrix}V_{s}\\0\\0\\0\\0\\0.5 V_{s}\\0\\0\\0\\0\end{matrix}\right]=\left[\begin{matrix}0 & 0 & 0 & 0 & 1.0 & 0 & 0 & 0 & 0 & 0\\0 & 0.5 c_{dg XU1} s + 0.5 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) + \frac{0.5}{R_{b}} + \frac{1.0}{R_{a}} & - 0.5 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) & - 0.5 c_{dg XU1} s - \frac{0.5}{R_{b}} & 0 & 0 & 0 & 0 & 0 & 0\\0 & - 0.5 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) & 0.5 c_{dg XU1} s + 0.5 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) + \frac{0.5}{R_{s}} & 0 & - \frac{0.5}{R_{s}} & 0 & 0 & 0 & 0 & 0\\0 & - 0.5 c_{dg XU1} s + 0.25 g_{m XU1} - \frac{0.5}{R_{b}} & - 0.25 g_{m XU1} & 0.25 C_{c} s + 1.0 C_{d} s + 0.25 c_{db XU1} s + 0.5 c_{dg XU1} s + 0.25 g_{o XU1} + \frac{0.5}{R_{b}} & 0 & 0 & 0 & 0 & 0 & 0\\1.0 & 0 & - \frac{0.5}{R_{s}} & 0 & \frac{0.5}{R_{s}} & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1.0\\0 & 0 & 0 & 0 & 0 & 0 & 2 c_{dg XU1} s + 2 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) + \frac{2}{R_{b}} & - 2 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) & - 2 c_{dg XU1} s - \frac{2}{R_{b}} & 0\\0 & 0 & 0 & 0 & 0 & 0 & - 2 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) & 2 c_{dg XU1} s + 2 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) + \frac{2}{R_{s}} & 0 & - \frac{2}{R_{s}}\\0 & 0 & 0 & 0 & 0 & 0 & - 2 c_{dg XU1} s + g_{m XU1} - \frac{2}{R_{b}} & - g_{m XU1} & C_{c} s + c_{db XU1} s + 2 c_{dg XU1} s + g_{o XU1} + \frac{2}{R_{b}} & 0\\0 & 0 & 0 & 0 & 0 & 1.0 & 0 & - \frac{2}{R_{s}} & 0 & \frac{2}{R_{s}}\end{matrix}\right]\cdot\left[\begin{matrix}I_{V1 D}\\V_{fb D}\\V_{in D}\\V_{out D}\\V_{sc D}\\I_{V1 C}\\V_{fb C}\\V_{in C}\\V_{out C}\\V_{sc C}\end{matrix}\right] \end{equation}

DM matrix equation

Matrix equation:

\begin{equation} \left[\begin{matrix}V_{s}\\0\\0\\0\\0\end{matrix}\right]=\left[\begin{matrix}0 & 0 & 0 & 0 & 1.0\\0 & 0.5 c_{dg XU1} s + 0.5 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) + \frac{0.5}{R_{b}} + \frac{1.0}{R_{a}} & - 0.5 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) & - 0.5 c_{dg XU1} s - \frac{0.5}{R_{b}} & 0\\0 & - 0.5 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) & 0.5 c_{dg XU1} s + 0.5 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) + \frac{0.5}{R_{s}} & 0 & - \frac{0.5}{R_{s}}\\0 & - 0.5 c_{dg XU1} s + 0.25 g_{m XU1} - \frac{0.5}{R_{b}} & - 0.25 g_{m XU1} & 0.25 C_{c} s + 1.0 C_{d} s + 0.25 c_{db XU1} s + 0.5 c_{dg XU1} s + 0.25 g_{o XU1} + \frac{0.5}{R_{b}} & 0\\1.0 & 0 & - \frac{0.5}{R_{s}} & 0 & \frac{0.5}{R_{s}}\end{matrix}\right]\cdot\left[\begin{matrix}I_{V1 D}\\V_{fb D}\\V_{in D}\\V_{out D}\\V_{sc D}\end{matrix}\right] \end{equation}

CM matrix equation

Matrix equation:

\begin{equation} \left[\begin{matrix}0.5 V_{s}\\0\\0\\0\\0\end{matrix}\right]=\left[\begin{matrix}0 & 0 & 0 & 0 & 1.0\\0 & 2 c_{dg XU1} s + 2 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) + \frac{2}{R_{b}} & - 2 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) & - 2 c_{dg XU1} s - \frac{2}{R_{b}} & 0\\0 & - 2 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) & 2 c_{dg XU1} s + 2 s \left(0.5 c_{gb XU1} + 0.5 c_{gs XU1}\right) + \frac{2}{R_{s}} & 0 & - \frac{2}{R_{s}}\\0 & - 2 c_{dg XU1} s + g_{m XU1} - \frac{2}{R_{b}} & - g_{m XU1} & C_{c} s + c_{db XU1} s + 2 c_{dg XU1} s + g_{o XU1} + \frac{2}{R_{b}} & 0\\1.0 & 0 & - \frac{2}{R_{s}} & 0 & \frac{2}{R_{s}}\end{matrix}\right]\cdot\left[\begin{matrix}I_{V1 C}\\V_{fb C}\\V_{in C}\\V_{out C}\\V_{sc C}\end{matrix}\right] \end{equation}

Go to balancedMOSAmp_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2024 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2024-10-05 15:15:53