Component selection

Noise:
$$R_b < 600\Omega,$$

 $R_c \gg 600\Omega,$
 $\frac{1}{2\pi f C_C} \ll R_s,$
 $S_{V_n} < 3.15 \frac{nV}{\sqrt{Hz}}$
 $S_{I_n} < 5.25 \frac{pA}{\sqrt{Hz}}$ Bandwidth: $\frac{1}{2\pi f_{low}C_A} \leq R_b$
 $GB > 45 MHz$
 $\frac{1}{2\pi f_{low}C_A} \leq R_b$ Accuracy: $R_a \gg R_a$

curacy: $R_c \gg R_s$ $A_0 \gg 33 \times 90 \approx 3000$

- Drive capability:

 $I_{\text{source,sink}} > 5 \text{ mA}$ SR > 1.5 V/ μ s $V_{\text{sat}} < 0.25 \text{ V}$

Component selection

Noise:
$$R_b < 600\Omega$$
,
 $R_c \gg 600\Omega$,
 $\frac{1}{2\pi f C_C} \ll R_s$,
 $S_{V_n} < 3.15 \frac{nV}{\sqrt{Hz}}$
 $S_{I_n} < 5.25 \frac{pA}{\sqrt{Hz}}$
Bandwidth: $\frac{1}{2\pi f_{low}C_A} \le R_b$
 $GB > 45 \text{ MHz}$
 $\frac{1}{2\pi f_{low}C_A} \le R_b$
Accuracy: $R \gg R$

- Accuracy: $R_c \gg R_s$ $A_0 \gg 33 \times 90 \approx 3000$

- Drive capability:

$$\begin{split} I_{\rm source,sink} &> 5~{\rm mA}\\ {\rm SR} &> 1.5~{\rm V}/\mu{\rm s}\\ V_{\rm sat} &< 0.25~{\rm V} \end{split}$$

Modeling OpAmp

Small-signal dynamic behavior OPA211

.model 0PA211_A0 0V + cd = 8p ; differential-mode input capacitance + gd = 50u ; differential-mode input conductance + cc = 2p ; common-mode input capacitance + av = {A_0*(1+s/2/PI/40M)/(1+s/2/PI/120)/(1+s/2/PI/20M)} ; voltage gain + zo = {3.6k/(1+s*3.6k*8u) + 0.7 + s*900n*60/(60+s*900n)} ; output impedance TEXAS INSTRUMENTS

OPA211, OPA2211

SBOS377K-OCTOBER 2006-REVISED SEPTEMBER 2018

Typical Characteristics (continued)

Modeling OpAmp

OPA211, OPA2211

SBOS377K-OCTOBER 2006-REVISED SEPTEMBER 2018

www.ti.com

6.6 Electrical Characteristics: $V_s = \pm 2.25$ to ± 18 V (OPAx211)

at $T_A = 25^{\circ}$ C, $R_I = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, (unless otherwise noted) **TEST CONDITIONS** PARAMETER MIN TYP MAX UNIT OFFSET VOLTAGE OPA211: ±30 ±125 μV $V_{S} = \pm 15 V$ V_{OS} Input offset voltage OPA2211: ±50 ±150 μV $V_{S} = \pm 15 V$ $V_{S} = \pm 15 V$ ±0.35 ±1.5 dV_{OS}/dT Input offset drift μV/°C $T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$ Input offset voltage vs $| T_A = 25^{\circ}C$ 0.1 1 μV/V PSRR power supply $T_{\Delta} = -40^{\circ}C$ to $+125^{\circ}C$ 3 μV/V INPUT BIAS CURRENT $V_{CM} = 0 V$ ±60 ±175 nA OPA211: ±200 $V_{CM} = 0 V$ nA $T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$ Input bias current OPA2211: $V_{CM} = 0 V$ ±250 nA $T_{\Delta} = -40^{\circ}C$ to $+125^{\circ}C$ $V_{CM} = 0 V$ ±25 ±100 nA Input offset current los $V_{CM} = 0 V$ nΑ ±150 $T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$ NOISE f = 0.1 to 10 Hz 80 Input voltage noise nV_{PP} er nV/√Hz $f = 10 \, \text{Hz}$ 2 Input voltage noise nV/√Hz *f* = 100 Hz 1.4 density nV/√Hz f = 1 kHz1.1 3.2 pA/√Hz $f = 10 \, \text{Hz}$ Input current noise density pA/√Hz 1.7 f = 1 kHz**INPUT VOLTAGE RANGE** V $V_{\rm S} \ge \pm 5 \rm V$ (V-) + 1.8(V+) – 1.4 Common-mode V_{CM} voltage range $V_S < \pm 5 V$ (V-) + 2(V+) – 1.4 V $V_{S} \ge \pm 5 V$ dB $(V-) + 2 V \le V_{CM} \le (V+) - 2 V$ 114 120 $T_A = -40^{\circ}C$ to $+125^{\circ}C$ Common-mode CMRR rejection ratio $V_S < \pm 5 V$ 120 dB $(V-) + 2 V \le V_{CM} \le (V+) - 2 V$ 110 $T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$ INPUT IMPEDANCE Differentia 20 || 8 kΩ || pF Common-mode 10 || 2 GΩ || pF **OPEN-LOOP GAIN**

SLiCAP O dcvar

Mean value bias current

SLiCAP O noise

Spectral density noise current

SLiCAP noise and bias models

nullor with offset and bias

- Standard deviation offset voltage Standard deviation offset current
- Standard deviation bias current
- $svo = 40 \times 10^{-6}$ $sio = 30 \times 10^{-9}$ iib = 0 $sib = 60 \times 10^{-9}$

nullor with equivalent input noise sources

- Spectral density noise voltage
- $sv = 1.2 \times 10^{-18}$ $si = 2.9 \times 10^{-24}$

SLiCAP noise verification

Noise figure 2.4dB over 1.57x500kHz bandwidth.

										-		
•	·	·	• •	•	•	•	•	•		•	•	•
				Г	24							
•	•	•			(4		0	ut				
				<u> </u>		+				•	•	
•	•	13	· 1	\mathbb{R}^{\cdot}	phz	}	•	•			•	
	L.			<u>،</u>		•	•	•	+		•	
\mathcal{A}		vai	16-	U .								
7.	L	ac=	- U									
	¥	dcv	/ar=	: 0						1	- III	
		noi	se=	{4*	k*T/	$R_{}$	_a}		1	<u>ل</u>	eiij	ł
•	•	•	• •		·	•	•	1	7		•	
•	•	•			•	•	•	•		•	•	
•	·	•				•	•	•	•		•	
	•						•	•			•	
b	=2	220	·C	ell=	=3.3	n A	1 ()=6	667	′k		
р												
									-	-		
•	•	•	• •		·	•	•	•			•	
•	•	·	• •		·	•	•	•		•	•	
•	•					•	•	•	•		•	
							•					

SLiCAP biasing verification

All component tolerances 1% (3-sigma) Standard deviation of the output voltage: 10mV

Frequency response

Uncompensated amplifier

Frequency compensation

Compensated amplifier

Construction

File	Control	Setup	Trigger	Measure	Analyze	Utilities	Help				7 Ap	or 2019 11:3	3 AM
	2.5	0 GSa/s	\$ 25.0	kpts	~~~	~~~~~		<u></u>		500 MHz	z #Av	gs: 16	
		0n 5	0.0 mV/	\sim	2 On			B On	4				
4								▼					
1,													
	Ţ								~~~~~				
	Ţ							+					
<mark>]</mark>]	ז			J									• 1
Ţ		$\overline{\mathbb{N}}$	\sim					+					
∫ ∫	<u>ו</u>)										
<u>1</u>	-												
Mor (1 of	e 2) I↑ St	atus Sc	e		× E	1.00 µs	5/ N	1 0.0 s	• 0	►	T 2.56	V	Ť
Dele All	te Ac Sai Ca	quisiti npling oture T	<mark>on:</mark> Mode R ime <u>1</u>	eal Time 0.0 μs					Trigger: Mode	Edge	(†)		
	Ef Bi	fective ts Of R	Res 4 es 1	00 ps/pt 2 bits					InfiniiSca	n NA			

Small-signal step response Source: 2mV_{pp}, 100kHz, 50% Uncompensated amplifier Total load capacitance 3.4nF

Small-signal step response Source: $2mV_{pp}$, 100kHz, 50%Partly compensated amplifier Total load capacitance 3.4nF

Small-signal step response Source: $2mV_{pp}$, 100kHz, 50%Partly compensated amplifier Total load capacitance 3.4nF

Small-signal step response Source: 2mV_{pp}, 100kHz, 50% Compensated amplifier

Total load capacitance 3.4nF

Large-signal step response Source: $50mV_{pp}$, 100kHz, 50%Compensated amplifier Total load capacitance 3.4nF

Large-signal sine response Source: $50mV_{pp}$, 100kHzCompensated amplifier Total load capacitance 3.4nF

Large-signal overdrive

- Source: 100mV_{pp}, 1kHz, triangle
- Compensated amplifier
- Total load capacitance 3.4nF
- Source/sink voltage drop < 10mV

Small-signal transfer HP4195A, source -40dBm Compensated amplifier Total load capacitance 3.4nF

File	Contro	l Setup	Trigger	Measure	Analyze	Utilities	Help				8 A	pr 2019 5:0	7 AM
	50	.0 MSa/s	s 100 .00 mV/	kpts	2 On			On		11.1 M	Hz		
4													↑ ⊺
	_							•					
	Ţ							-					
	Ţ							-					
1			d li u bila ne	anton Abbe			h. vin blivetore w	andes het het en de het het het het het het het het het he	dayan dalama				1 Î∿
Ţ				1997 (1997) 1997 (1997)		andes billerieteren side				מערידים בנעירים ביוויים איז	a 111. – a hade et devellenée a	u maada ahaa ka k	
ſſ	٦												
<u></u>													
Mor (1 of	e 1			O 🛛		200 µs/		0.0 s		0 ►	T 8.00	mV 🔺 🗋	Ť
Dele All	te	ieasui enii	Curre Me M	AC nt 89. an ? 515 in ? 83. ax ? 11.	Vrms(1) 4726 μV .261 μV 0665 μV 2738 mV								

Oscilloscope noise 83uV RMS Shorted input

File	Contro	Setup	Trigger	Measure	e Analyze	Utilities	Help				7 A	opr 2019 9:0	03 PM
	50	.0 MSa/s	s 100	kpts		~~~~				- 11.1 M	Hz		
			.00 mV/		2		3			4			
<u></u>								·····]↑T
	F II												
₽								+					
‡]	۲-												
↓ l				a matura cu		and MA	-						וּדָ י
1													
<u>]</u> ^	- /												
Ą													
Mor	e T			0 🖸	<u> </u>	H 200 µ	5/ N N	1 0.0 s	•	0 ►	T 8.00	mV 🔄	Ť
(2 of)	2)	leasurem	ents His	togram	Status Sca	ales							
Dele All	te	Y Sca Y Offs	le 898 et 0 h	8.273 kh iits	its/ St	Mean -2 d Dev 3 μ±1σ 6	273.7120 μV 884.813 μV 88.3%	p- Mi Ma	p 4.5000 n n -2.5484 n x 1.9516 n	nV Me nV nV	dian -274. Mode -306. Hits 206.	2 μV 5 μV 3082 Mhits	
						μ±2σ 9 μ±3σ 9)5.6%)9.7%	Bin Widt	h 16.1 μV		Peak 3.59	3090 Mhits	

Output noise

- 385uV RMS
- Compensated amplifier
- Total load capacitance 3.4nF
- Corrected for scope noise: 376uV
- N=2.3dB @ 1MHz NBW
- N=2.7dB @ 900kHz NBW

Conclusions and remarks

- 1. Amplifier performance complies with requirements
- 2. Spice simulation with TI macro model did not show small-signal instability
- 3. Modeling of individual performance aspects seems successful approach